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Abstract. In the framework of Hamiltonian formalism the quantum statistical properties of
an optical field propagating inside a directional coupler operating by nondegenerate parametric
amplification are studied. We investigate the effect of switching between the input modes and the
outgoing fields from the coupler. Particular attention is paid to two-mode squeezing, the second-
order correlation function, quasiprobability distribution functions, and photon-number distribution.
Incident number and coherent states are considered. It has been shown that when one of the modes
enters the coupler in the Fock state|1〉 and the other modes are in vacuum states, the coupler can
serve as a generator of a coherent state. Furthermore, regimes for the generation and transmission
of squeezed and/or sub-Poissonian light are found.

1. Introduction

Recently a resurgence of interest has focused on the problem of optical control of switching,
modulating and frequency selecting in guided wave schemes. Such schemes are important
in both optical communication networks and in generating new fields of nonclassical light.
The most important optical devices representing these schemes are nonlinear couplers which
consist of two or more waveguides connected mutually by means of evanescent waves. In one
or more of these waveguides a nonlinear process takes place. When a flux is introduced into
only one of the waveguides, an output from either waveguide occurs, which can be controlled
by the device design and the input flux. The action of nonlinear couplers has been demonstrated
experimentally in planar structures [1, 2], dual optical fibres [3], and also for certain organic
polymers [4].

Since the pioneering work on nonlinear couplers of Jensen and Maier [5], a series of
papers have been devoted to the study of this important optical device. Particular attention
has been paid to quantum statistical properties [6–10] in relation to quantum noise and the
generation and transmission of nonclassical light. In fact, the original model proposed by
Jensen and Maier was recognized to have potential applicability in optical communications as
an intensity-dependent routing switch [11] and its stability analysis [12] was performed. Such
generation and transmission of nonclassical light can be very effective as a consequence of the
evanescent waves involved in the interaction. We mention that field-dependent effects require
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Figure 1. Scheme of realization of interaction in (1.1); BS are beam splitters.

further investigation of their dependence on phase mismatch in the medium [13]. Furthermore,
interesting quantum statistical properties of nonlinear co-/contra-directional couplers were
derived, composed of two nonlinear waveguides operating by second-harmonic generation
[9, 14], the nondegenerate optical parametric process of frequency down-conversion [15],
optical Kerr-like effects [16–21] and Raman scattering ([22], and references therein). It
is worthwhile to mention that the revivals and collapses of the oscillations in mean photon
number occurring for the well known Jaynes–Cummings model [23] has been also observed
in the codirectional nonlinear couplers composed of Kerr-nonlinear waveguides [18,19].

In this paper we concentrate on studying the statistical properties of an optical field
propagating within a directional coupler containing a parametric amplifying medium. Our
starting point is the Hamiltonian, which represents a nonlinear directional coupler composed of
two nonlinear waveguides (taking into account the case of a strong pump, where non-depleting
intensity is included in the amplifier coupling constant). This model can be described by

H

h̄
= λ1(â1â3 + â†

1â
†
3) + λ2(â1â

†
2 + â†

1â2) + λ3(â2â4 + â†
2â

†
4) (1.1)

and the corresponding scheme is illustrated in figure 1. Two waveguides of lengthL operating
by nondegenerate optical parametric processes with signal beams described by annihilation
operatorŝa1 andâ2 and idler beams described byâ3 andâ4 are pumped by strong laser beams of
complex amplitudesα1p andα2p, respectively, and signals are coupled linearly by evanescent
waves with the strengthλ2; v is the speed of the waves (dispersion is neglected) andχ(2) is
quadratic susceptibility. The coupling constantsλ1 andλ3 include the pumping amplitudes.
Instead of initial coherent states at the signal and idler beams, the Fock states generated, for
instance, in micromaser can be introduced. Outgoing fields are detected as single or compound
modes by means of homodyne, photocounting or coincidince detection. As we assume one-
passage propagation, losses in the beams can be neglected. In other cases they can be described
in the standard quantum way in the form of interaction of light beams with reservoirs, as, for
instance, described in [24]. However, one generally finds that nonclassical properties of light
beams degrade due to the effect of the reservoir: less by the damping (which may be by several
orders weaker than the nonlinear coupling), more due to by the influence of the non-zero mean



Quantum statistical properties of nondegenerate optical coupler 3459

number of reservoir oscillators.
Further, the values of the coupling constantsλ1, λ2, λ3 are chosen for simplicity of

calculation and illustration of the physical behaviour of the system. We mainly demonstrate the
effect of their mutual relations and their magnitudes are not important for such demonstration.
For an experimental realization these values can be estimated as(1011–1012) s−1, provided
that the pumping laser of power in mW is used, producing about 1019 photons s−1, which is
sufficient power to allow us to neglect quantum noise in the pumping beams. Then all the
effects shown are interpreted on a correspondingly reduced timescale. Initial state amplitudes
or photon numbers are chosen in units because switching properties are examined on the
quantum level of single photons.

Clearly, the Hamiltonian has a kind of symmetry which will be helpful to reduce the
number of equations. For example, if one takesâ1 ←→ â2, â3 ←→ â4 andλ1 ←→ λ3, the
Hamiltonian (1.1) is still invariant.

The above Hamiltonian was considered by Janszkyet al [15] (taking into consideration
that the coupling parametersλ1 andλ2 are equal), where they discussed the propagation of a
quantum field in a coupler when the channels contain a parametric amplifying medium. This
situation occurs if one or both channels [25] are made from a second-order nonlinear material
realizing a parametric process (down conversion). They have found two operation regimes: one
under threshold, where the amplification is less effective than the coupling between channels,
and another above threshold, where the amplification constant is greater than the coupling
constant. However, the above Hamiltonian (1.1) has the advantage of showing spatial effects
(e.g. switching between the channels), where the coupling parameters will play a great role
in controlling this phenomena. This is demonstrated in the following. Also, we give more
details for the quantum statistical properties of this model compared with [15]. We study
these properties taking into account the coupling between idler modes due to the evanescent
field between the waveguides [26]. Moreover, we wish to treat problems of propagation in the
Hamiltonian formalism, assuming that the energy of the system does not have directionality.
However, in the case where all waves are propagating with the same velocity, time and space
relate by the velocity of propagationv, z = vt . Our study of the model is organized as
follows: in section 2 we describe the model under discussion together with the solution of the
equations of motion, in section 3 we derive two-mode squeezing characteristics of generated
light, section 4 is devoted to a discussion of photon antibunching, section 5 includes results
for quasidistribution functions, section 6 includes a discussion of photon-number distribution
for the output modes, and finally we summarize our main conclusions in section 7.

2. Equations of motion and their solutions

The Heisenberg equation of motion for any operatorÔ is given by

dÔ

dt
= ∂Ô

∂t
+

1

ih̄
[Ô,H ] (2.1)

where [. . . , . . .] represents the commutator.
Therefore we can describe the propagation of the field operators by the following equations:

dâ1

dt
= −iλ1â

†
3 − iλ2â2 (2.2a)

dâ2

dt
= −iλ2â1− iλ3â

†
4 (2.2b)

dâ3

dt
= −iλ1â

†
1 (2.2c)
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dâ4

dt
= −iλ3â

†
2 (2.2d)

having the conservation law

d

dt
[â†

1â1 + â†
2â2 − â†

3â3− â†
4â4] = 0.

The exact solution of the above equations has the following form:

â1(t) = f1(t)â1(0) + if2(t)â2(0)− if3(t)â
†
3(0) + f4(t)â

†
4(0) (2.3a)

â2(t) = g2(t)â2(0) + ig1(t)â1(0) + g3(t)â
†
3(0)− ig4(t)â

†
4(0) (2.3b)

â3(t) = h3(t)â3(0) + h2(t)â
†
2(0)− ih1(t)â

†
1(0)− ih4(t)â4(0) (2.3c)

â4(t) = l4(t)â4(0) + l1(t)â
†
1(0)− il2(t)â

†
2(0)− il3(t)â3(0) (2.3d)

whereâj (0) are the input operators and the time-dependent functions are given by

f1(t) = cos(t�1) cosh2 φ − cosh(t�2) sinh2 φ (2.4a)

f2(t) = λ3

2

[
sin(t�1)

�1
− sinh(t�2)

�2

]
sinh(2φ)

−λ2

[
sinh(t�1)

�1
cosh2 φ − sinh(t�2)

�2
sinh2 φ

]
(2.4b)

f3(t) = λ1

[
sin(t�1)

�1
cosh2 φ − sinh(t�2)

�2
sinh2 φ

]
(2.4c)

f4(t) = 1
2[cos(t�1)− cosh(t�2)] sinh(2φ) (2.4d)

h1(t) = λ2

2

[
sin(t�3)

�3
− sinh(t�4)

�4

]
sinh(2θ) + λ1

[
sinh(t�4)

�4
cosh2 θ − sin(t�3)

�3
sinh2 θ

]
(2.5a)

h2(t) = 1
2[cosh(t�4)− cos(t�3)] sinh(2θ) (2.5b)

h3(t) = cosh(t�4) cosh2 θ − cos(t�3) sinh2 θ (2.5c)

h4(t) = λ3

2

[
sin(t�3)

�3
− sinh(t�4)

�4

]
sinh(2θ) (2.5d)

where

�1 = [k2
1 cosh2 φ + λ2

3 sinh2 φ − λ2λ3 sinh(2φ)]
1
2 (2.6a)

�2 = [k2
1 sinh2 φ + λ2

3 cosh2 φ − λ2λ3 sinh(2φ)]
1
2 (2.6b)

and

φ = 1

2
tanh−1

(
2λ2λ3

λ2
2 + λ2

3 − λ2
1

)
(2.7)

with k1 =
√
λ2

2 − λ2
1. Other coefficients can be obtained with the help of the substitution

λ1←→ λ3 and hence

�1←→ �3 �2←→ �4 φ←→ θ

(f1(t), f2(t), f3(t), f4(t))←→ (g2(t), g1(t), g4(t), g3(t))

(h1(t), h2(t), h3(t), h4(t))←→ (l2(t), l1(t), l4(t), l3(t)).

(2.8)

In the forthcoming discussion we restrict ourselves on the relations for modes 1 and 3, keeping
in mind that the other relations for modes 2 and 4 can be obtained from (2.8) using the following
substitutions:â1←→ â2, â3←→ â4 andλ1←→ λ3.
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From equations (2.3) it is easy to check that the well known commutation relations between
Boson operators are satisfied, which leads to the following relations:

f 2
1 (t) + f 2

2 (t)− f 2
3 (t)− f 2

4 (t) = 1
h2

3(t) + h2
4(t)− h2

1(t)− h2
2(t) = 1

f1(t)h1(t) = f2(t)h2(t) + f3(t)h3(t) + f4(t)h4(t).

(2.9)

Here we point out that the existence of the negative sign in the denominator of equation (2.7)
can restrict our choice of the coupling parametersλj .

In subsequent sections we use the results obtained here to discuss the statistical properties
of the Hamiltonian model (1.1), where we consider the squeezing and antibunching phenomena.
We shall also examine the behaviour of quasiprobability distribution functions and the photon-
number distribution.

3. Two-mode squeezing phenomenon

One of the important nonclassical phenomena in the framework of quantum theory, owing
to its application in optical communications and high precision measurements, is quadrature
squeezing of vacuum fluctuations. Such a phenomenon is characterized by the property that the
variance of the quadrature operator is less than the value associated with the vacuum noise level.
This phenomenon can be seen in simple models of a number of nonlinear optical processes
such as harmonic generation [27, 28], four-wave mixing processes [29, 30] and Raman and
hyper-Raman processes [24,31,32].

The definition of single-mode squeezing has been extended to two-mode interaction
[33, 34]. The parametric amplifier in a cavity is a particularly important example since it
can ideally produce squeezed light with characteristics akin to single- and two-mode when
operating in degenerate and nondegenerate regimes, respectively [35].

Here we study two-mode squeezing using quadrature operatorsX̂ andŶ which are defined
as

X̂ = 1
2[âk + â†

k + âj + â†
j ] (3.1a)

Ŷ = 1

2i
[âk − â†

k + âj − â†
j ] (3.1b)

wherek 6= j ; k, j = 1, 2, 3, 4. These quadratures satisfy the commutation relation

[X̂, Ŷ ] = i (3.1c)

and then the uncertainty relation holds

〈(4X̂)2〉〈(4Ŷ )2〉 � 1
4. (3.1d)

Therefore, two-mode squeezing occurs when

2〈(4X̂)2〉 − 1< 0 or 2〈(4Ŷ )2〉 − 1< 0 (3.1e)

where〈(4X̂)2〉 = 〈X̂2〉− 〈X̂〉2 is the variance of the quadrature operatorX̂ and zero has been
taken as a measure of squeezing, i.e. squeezing occurs in the quadratureX̂ (say) only when
2〈(4X̂)2〉 − 1 is less than zero.

Since the electromagnetic field is guided inside the structure, exchange of energy between
the two waveguides is possible because of the evanescent field between the waveguides [26].
So we can examine several cases of two-mode squeezing for this model using the input initial
coherent states

∏4
j=1 |α〉j . The basic equations for this study are (2.3) and (3.1).
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In the first case, two-mode squeezing for mode 1 and mode 4, i.e. for the signal mode in
the first waveguide and the idler mode in the second waveguide, is described by

2〈(4X̂1)
2〉 exp(2φ) = [coshφ cos(t�1) + sinhφ cosh(t�2)]

2

+

[
(λ3 coshφ − λ2 sinhφ)

sinh(t�2)

�2
+ (λ3 sinhφ − λ2 coshφ)

sin(t�1)

�1

]2

(3.2a)

2〈(4Ŷ1)
2〉 exp(−2φ) = [coshφ cos(t�1)− sinhφ cosh(t�2)]

2

+

[
(λ3 coshφ − λ2 sinhφ)

sinh(t�2)

�2
− (λ3 sinhφ − λ2 coshφ)

sin(t�1)

�1

]2

.

(3.2b)

In the second case, two-mode squeezing for mode 1 and mode 2, i.e. for the signal modes in
the first and second waveguides, is described by

〈(4X̂2)
2〉 = 〈(4Ŷ2)

2〉 = 1
2[1 + f 2

3 (t) + f 2
4 (t) + g2

2(t) + g2
4(t)]. (3.3)

In the third case, two-mode squeezing for mode 3 and mode 4, i.e. for the idler modes in the
two waveguides, is described by

〈(4X̂4)
2〉 = 〈(4Ŷ4)

2〉 = 1
2[1 + h2

2(t) + h2
3(t) + l21(t) + l22(t)]. (3.4)

We can see from (3.2)–(3.4) that this coupler can generate squeezing, in terms of two-mode
definition, only when considering the signal mode in the first waveguide and the idler mode
in the second waveguide or the idler mode in the first waveguide and the signal mode in
the second waveguide. So we concentrate on this case. In figure 2, we have plotted the
squeezing component for the first case for different values ofλj against timet . Curves
A1 and A2 relate to theX1-component corresponding to the two groups of values forλj ,
respectively, and, similarly, curves B1 and B2 relate to theY1-component. Forλ1 small,
λ2 > λ3 > λ1, i.e. when linear exchange between the waveguides is stronger than the
nondegenerate parametric amplification inside the waveguides, we observe that squeezing
is dominant in the first quadrature, having oscillatory behaviour; nevertheless the value of
squeezing is negligible in the second component, see curves A1 and B1. Increasing the values
of bothλ1 andλ2 and keepingλ3 as before, we observed squeezing in both the quadratures
and its values were more pronounced than in the earlier case, with the maximum value of
squeezing being in the first quadrature, see curves A2 and B2.

Thus, we can conclude that this system is able to generate squeezed light in terms of two-
mode squeezing only when the signal and idler modes are considered in different waveguides
and provided that the signal modes are coupled. The values of squeezing are well controllable
by the values of coupling constants.

4. Second-order correlation function

Antibunched and/or sub-Poissonian light is an example of nonclassical light and can be
determined from a photocounting-correlation measurement. In practice, the measurement
can be performed in an experiment of the Hanbury Brown–Twiss type. As a measure for
super-Poissonion (classical) and sub-Poissonion (nonclassical) phenomena of photons in the
system, the normalized normal second-order correlation function can serve [36]:

g
(2)
j (t) =

〈â†2
j (t)â

2
j (t)〉

〈â†
j (t)âj (t)〉2

= 1 +
〈(4n̂j (t))2〉 − 〈â†

j (t)âj (t)〉
〈â†
j (t)âj (t)〉2

(4.1)
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Figure 2. Two-mode squeezing phenomenon for the first case, for solid curvesλ1 = 0.1, λ2 = 1.25
andλ3 = 0.5; for dashed curvesλ1 = 0.6, λ2 = 2 andλ3 = 0.5.

where the subscriptj relates to thej th mode and〈(4n̂j (t))2〉 are the photon-number variances
with n̂j (t) = â

†
j (t)âj (t). Then it holds thatg(2)j (t) < 1 for a sub-Poissonian distribution,

g
(2)
j (t) > 1 for a super-Poissonian distribution and wheng(2)j (t) = 1 a Poisson distribution

of photons occurs. As is well known, the best examples for sub-Poissonian, super-Poissonian
and Poissonian statistics are Fock state, chaotic field and coherent state, respectively.

On the other hand, it has been shown explicitly in [37, 38] that sub-Poissonian photon
statistics need not be associated with antibunching, but can be accompanied by bunching.
However, within the framework of the classical theory, light cannot be antibunched, i.e.
antibunched light is a manifestation of a quantum effect. The basic formula to study this
phenomenon is the two-time normalized intensity correlation function [38, 39]. For thej th
mode, this function is defined by

g
(2)
j (t, t + τ) = 〈â

†
j (t)â

†
j (t + τ)âj (t + τ)âj (t)〉

〈â†
j (t)âj (t)〉〈â†

j (t + τ)âj (t + τ)〉 . (4.2)

The importance of this function in the analysis of photon antibunching comes from the direct
relation between this function and the joint detection probability of two photons, one at time
t and another at timet + τ . It is clear that using (4.2) forτ → 0 as a definition of bunching
properties, then the bunching/antibunching and super-/sub-Poissonian statistics are in one-to-
one correspondence. A more general definition of photon antibunching can be adopted [38,39]
if g(2)j (t, t + τ) increases from its initial value atτ = 0. This can be represented in equivalent

differential form, assuming thatg(2)j (t, t + τ) is a well behaved function inτ , as

Kj(t) =
∂g

(2)
j (t, t + τ)

∂τ
|τ=0 > 0. (4.3)
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Photon bunching is given by the opposite condition (Kj(t) < 0); otherwise the photons are
unbunched.

Here we turn our attention to trace the nonclassical effects for the model under discussion
using the normalized second-order correlation function for the various modes when the initial
input light modes are in number states

∏4
j=1 |n〉j as well as in the coherent states. Then, we

extend our discussion to demonstrate the photon antibunching phenomenon for our model.
When the input light is in the number states, we have

〈n̂1(t + τ)〉n = f 2
1 (t + τ)n̄1 + f 2

2 (t + τ)n̄2 + f 2
3 (t + τ)(n̄3 + 1) + f 2

4 (t + τ)(n̄4 + 1) (4.4a)

〈n̂3(t + τ)〉n = h2
3(t + τ)n̄3 + h2

4(t + τ)n̄4 + h2
2(t + τ)(n̄2 + 1) + h2

1(t + τ)(n̄1 + 1) (4.4b)

and

〈â†
1(t)â

†
1(t + τ)â1(t + τ)â1(t)〉n = [f 2

1 (t)n̄1 + f 2
2 (t)n̄2][f 2

3 (t + τ)(n̄3 + 1)

+f 2
4 (t + τ)(n̄4 + 1)] + n̄1n̄2[f1(t)f1(t + τ) + f2(t)f2(t + τ)]2

+f 2
1 (t)f

2
1 (t + τ)n̄1(n̄1− 1) + f 2

2 (t)f
2
2 (t + τ)n̄2(n̄2 + 1)

+2[f1(t)f1(t + τ)n̄1 + f2(t)f2(t + τ)n̄2][f3(t)f3(t + τ)(n̄3 + 1)

+f4(t)f4(t + τ)(n̄4 + 1)]

+[f 2
1 (t + τ)n̄1 + f 2

2 (t + τ)n̄2][f 2
3 (t)(n̄3 + 1) + f 2

4 (t)(n̄4 + 1)]

+(n̄3 + 1)(n̄4 + 1)[f3(t)f4(t + τ) + f4(t)f3(t + τ)]2

+f 2
3 (t)f

2
3 (t + τ)(n̄3 + 1)(n̄3 + 2) + f 2

4 (t)f
2
4 (t + τ)(n̄4 + 1)(n̄4 + 2) (4.5a)

〈â†
3(t)â

†
3(t + τ)â3(t + τ)â3(t)〉n = [h2

3(t)n̄3 + h2
4(t)n̄4][h2

2(t + τ)(n̄2 + 1)

+h2
1(t + τ)(n̄1 + 1)] + n̄3n̄4[h3(t)h4(t + τ) + h4(t)h3(t + τ)]2

+h2
3(t)h

2
3(t + τ)n̄3(n̄3− 1) + h2

4(t)h
2
4(t + τ)n̄4(n̄4 + 1)

+2[h3(t)h3(t + τ)n̄3 + h4(t)h4(t + τ)n̄4]

×[h2(t)h2(t + τ)(n̄1 + 1) + h1(t)h1(t + τ)(n̄1 + 1)]

+[h2
3(t + τ)n̄3 + h2

4(t + τ)n̄4][h2
1(t)(n̄1 + 1) + h2

2(t)(n̄2 + 1)]

+(n̄2 + 1)(n̄2 + 1)[h1(t)h2(t + τ) + h2(t)h1(t + τ)]2

+h2
1(t)h

2
1(t + τ)(n̄1 + 1)(n̄1 + 2) + h2

2(t)h
2
2(t + τ)(n̄2 + 1)(n̄2 + 2). (4.5b)

Firstly, we will discuss the sub-Poissonian statistics, i.e. we takeτ = 0 in equations (4.4) and
(4.5). Fornj = 0, i.e. for input vacuum states, we can get

〈(4n̂1(t))
2〉0 − 〈n̂1(t)〉0 = (f 2

3 (t) + f 2
4 (t))

2

〈(4n̂3(t))
2〉0 − 〈n̂3(t)〉0 = (h2

1(t) + h2
2(t))

2 (4.6)

where the relation

〈(4n̂j (t))2〉 − 〈n̂j (t)〉 = 〈â†2
j (t)â

2
j (t)〉 − 〈â†

j (t)âj (t)〉2 (4.7)

has been used. It is clear from (4.6) that input vacuum states, which have maximum
pronounced sub-Poissonian statistics, evolve into pure super-Poissonian statistics states for
all times t 6= 0 inside the coupler. We display the second-order correlation function (4.1)
against timet in figure 3 for input number states with different mean photon numbersn̄j
(n̄1 = 4, n̄j = 1, j = 2, 3, 4) and for different values of coupling constants. In figure 3(a),
g
(2)
1 (t) for mode 1 is shown, where alwaysλ2 = 1.2, λ3 = 0.5. λ1 = 0.1, 0.6, corresponding

to curveA and curveB, respectively. Initially,g(2)1 (0) = 3
4, which is the corresponding value

for the Fock state|4〉. Increasing the time, switching between modes starts (see curveA);
g
(2)
1 (t) has an oscillating behaviour between values for sub-Poissonian and super-Poissonian
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statistics for rather short interaction times. However, for large interaction times the oscillations
are successively washed out and super-Poissonian statistics are dominant. As seen in curve
B, g(2)1 (t) does not exhibit any periodic behaviour and takes values corresponding to super-
Poissonian statistics shortly after the switching on of the interaction. On the other hand, we
can see that strongly sub-Poissonian light is generated not only for short-time interaction but
also for larger times as demonstrated by the behaviour ofg

(2)
2 (t) in the second mode for the

same values of̄nj as in the former case and for(λ1, λ2, λ3) = (0.1, 1.2, 0.5), see figure 3(b).
Moreover,g(2)2 (t) behaves more smoothly thang(2)1 (t) for the same values of̄nj andλj .

We note that forλ2 less thanλ1 andλ3 andt 6= 0, the second-order correlation functions
always exhibit super-Poissonian statistics and there is no oscillatory behaviour regardless of
the values of input mean photon numbers, since all time-dependent functions in equations (4.4)
and (4.5) are hyperbolic functions.

For input coherent states, we have

〈n̂1(t + τ)〉coh = |α∗1f1(t + τ)− iα∗2f2(t + τ) + iα3f3(t + τ) + α4f4(t + τ)|2
+f 2

3 (t + τ) + f 2
4 (t + τ) (4.8a)

〈n̂3(t + τ)〉coh = |α3h3(t + τ)− iα∗1h1(t + τ) + α∗2h2(t + τ)− iα4h4(t + τ)|2
+h2

1(t + τ) + h2
2(t + τ) (4.8b)

〈â†
1(t)â

†
1(t + τ)â1(t + τ)â1(t)〉coh = 〈n̂1(t)〉coh〈n̂1(t + τ)〉coh

+[f3(t)f3(t + τ) + f4(t)f4(t + τ)]2

+[f3(t)f3(t + τ) + f4(t)f4(t + τ)][ 〈â†
1(t)〉coh〈â1(t + τ)〉coh + c.c.] (4.9a)

〈â†
3(t)â

†
3(t + τ)â3(t + τ)â3(t)〉coh = 〈n̂3(t)〉coh〈n̂3(t + τ)〉coh

+[h1(t)h1(t + τ) + h2(t)h2(t + τ)]2

+[h1(t)h1(t + τ) + h2(t)h2(t + τ)][ 〈â†
3(t)〉coh〈â3(t + τ)〉coh + c.c.] (4.9b)

where〈n̂j (t)〉coh can be obtained from〈n̂j (t + τ)〉coh by simply settingτ = 0; 〈âj (t)〉coh is the
expectation value for̂aj (t) in the coherent states and c.c. is the complex conjugate.

From equations (4.1) it is clear that the condition for sub-Poissonian statistics is that the
variance〈(4n̂j (t))2〉 is less that the mean photon number〈n̂j (t)〉. Combining (4.8) and (4.9)
into (4.7), after takingτ = 0, it is easy to show that this system cannot provide sub-Poissonian
light for input coherent light. For instance, for mode 1, from equations (4.7) with (4.8a), (4.9a)
it follows that sub-Poissonian light could be generated provided that

2|α∗1f1(t)− iα∗2f2(t) + iα3f3(t) + α4f4(t)|2 + f 2
3 (t) + f 2

4 (t) < 0. (4.10)

It is evident that this inequality cannot be fulfilled regardless of the values ofαj andλj .
More precisely, for input coherent light, this model can generate classical light, e.g. coherent,
partially coherent and chaotic light.

In figures 4 and 5 we have plottedg(2)j (t) against timet for λ1 = 0.1, λ2 = 1.2, λ3 = 0.5

and input coherent light with complex amplitudesαj = |αj |eψj . In all these figuresg(2)j (0) = 1
initially. In figure 4, for|αj | = 1 and(ψ1, ψ2, ψ3, ψ4) = ( π2 , π3 , π3 , π3 ), we see the oscillatory

behaviour in the evolution ofg(2)j (t) in all cases showing that the photons are transferred from
one mode to the other. These oscillations successively disappear for large interaction times.
They can be destroyed by changing the values of the complex amplitudes of input light, but not
by changing the values of the coupling constants (see figure 5 for shown values). This shows
how one can control light by light via nonlinear medium. In figure 5(a) we can see the periodic
behaviour exhibiting photon statistics between almost Poissonian and super-Poissonian ones
for mode 1 with gradual increase of values ofg(2)(t) = 2 representing chaotic light for larger
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(a)

(b)

Figure 3. Normalized normal second-order correlation function when both the modes are initially
in the number states with mean photon numbern̄1 = 4, n̄j = 1, j = 2, 3, 4. For all curves

λ2 = 1.2 andλ3 = 0.5. For curve A,λ1 = 0.1 and for curve B,λ1 = 0.6: (a) g(2)1 (t) for mode 1;

(b) g(2)2 (t) for mode 2. The full line corresponds tog(2)(0) of the coherent light.

interaction times. We see that the initial coherent state can be successively approximately
regenerated. From figure 5(b) we can see that the precise Poisson distribution is obtained only
initially and partially coherent light is obtained for later times, with the maximal noise value
in mode 3 (curve B). For input coherent light 1� g(2)j (t) � 2 holds, i.e. one cannot obtain
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(a)

(b)

Figure 4. Normalized normal second-order correlation functiong(2)j (t) for different modes when
both the modes are initially in the coherent states with|αj | = 1, j = 1, 2, 3, 4, ψ1 = π

2 and
ψj = π

3 , j = 2, 3, 4 for all curves,λ1 = 0.1, λ2 = 1.2 andλ3 = 0.5: (a) first mode, curve A, and
fourth mode, curve D; (b) second mode, curve B, and third mode, curve C.

superchaotic light. One can also observe some complementary behaviour of both the modes.
Concerning photon bunching and antibunching according to the definition (4.3), we have

analysed the cases of input number and coherent states. We note, in general, that the quantity
Kj(t) exhibits oscillatory behaviour between negative and positive values for both number and
coherent input states, i.e. both antibunching and bunching can occur. The photon antibunching
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(a)

(b)

Figure 5. Normalized normal second-order correlation functiong(2)j (t) for different modes when
both the modes are initially in the coherent states with|α1| = 10, |αj | = 1, j = 2, 3, 4,
ψj = π

6 , j = 1, 2, 3, 4 whereλj have the same values as in figure 4: (a) first mode; (b) third
mode, curve B, and fourth mode, curve C.

is more pronounced for input number states than for input coherent states. Comparing these
results with those for sub-Poisson statistics, we can conclude that there is no direct relation
between antibunching and sub-Poissonian statistics here, in agreement with results shown in
the literature [37, 38]. We can demonstrate this graphically in figure 6, by considering the
first mode, for input number state (solid curve) and for input coherent state (centred curve) for



Quantum statistical properties of nondegenerate optical coupler 3469

Figure 6. The quantityK1(t) for mode 1 when both the modes are initially in the number (solid
curve) and coherent (centred curve) input states for the same situation as in figure 3(a) (curve A)
and figure 4(a) for number state and coherent state, respectively.

the same values of parameters as those of figures 3(a) (curve A) and 4(a). It is interesting to
mention that three definitions of photon antibunching can be given, which are not equivalent
for nonstationary fields and the problem is still under consideration by some authors [39].

We conclude this section by turning our attention to the cross-correlation between different
modes in the model. Cross-correlation may be used to describe anticorrelation between modes,
which may cause the variance of the photon number to be less than the average of the photon
number, thus causing antibunching, and it can be measured by detecting single modes separately
by two photodetectors and correlating their outputs. Cross-correlation betweenj th mode and
kth mode is controlled by

4(j,k)cross = 〈â†
j (t)âj (t)â

†
k (t)âk(t)〉 − 〈â†

j (t)âj (t)〉〈â†
k (t)âk(t)〉 j 6= k. (4.11)

When the initial input states are coherent states, we find

4(1,2)cross = i(f1(t)g1(t) + f2(t)g2(t))(ᾱ
∗
1(t)ᾱ2(t)− ᾱ1(t)ᾱ

∗
2(t)) + (f1(t)g1(t) + f2(t)g2(t))

2

(4.12a)

4(1,3)cross = i(f3(t)h3(t) + f4(t)h4(t))(ᾱ1(t)ᾱ3(t)− ᾱ∗1(t)ᾱ∗3(t)) + (f3(t)h3(t) + f4(t)h4(t))
2

(4.12b)

4(3,4)cross= i(l3(t)h3(t)− l4(t)h4(t))(ᾱ
∗
3(t)ᾱ4(t)− ᾱ3(t)ᾱ

∗
4(t)) + (h3(t)l3(t)− l4(t)h4(t))

2

(4.12c)

whereᾱj (t) are the mean values of the operatorsâj (t) with respect to coherent states, given
by equations (4.5). In figure 7, we have plotted evolution of cross-correlation functions given
by (4.12) against timet for input coherent light having amplitudes|αj |2 = 2 and coupling
constantsλj have the same values as those in figure 4. It is evident that anticorrelation occurs
in all cases. The cross-correlations between signal and idler modes in the same waveguide
(curves B and F) exhibit oscillatory behaviour with time. Also, we can see that the values in the
second waveguide (curve F) are more pronounced than in the first waveguide (curve B) owing
to λ3 > λ1. Minimum cross-correlation is reached between idler modes(3, 4) (curve E).
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Figure 7. Cross-correlation function for different modes when all modes are initially in the coherent
states with|αj |2 = 2, whereλj have the same values as in figure 4. Curves A–F represent correlation
between modes(1, 2), (1, 3), (1, 4), (2, 3), (3, 4) and(4, 2), respectively.

5. Quasiprobability functions

The important quantities in quantum mechanics are the different moments for the harmonic
oscillator. Such moments are the basis to study the quantum statistical properties of quantum
system. There are two ways for obtaining a more complete statistical description of the field
based on characteristic functions and quasiprobability distribution functions. In this section
we study such functions for the model under discussion. For this model we consider joint
quasiprobability functions as well as the single-mode quasiprobability function for two cases
when all modes enter the coupler in coherent states as well as in number states.

As is well known, the single-modes-parametrized characteristic function is defined as

C(1)(ζj , s, t) = Tr
[
ρ̂(0) exp

( s
2
|ζj |2 + ζj â

†
j (t)− ζ ∗j âj (t)

)]
(5.1)

wheres takes on values 1, 0 and−1 corresponding to normally, symmetrically and antinormally
ordered characteristic functions, respectively.ρ̂(0) is the initial density operator for the system,
Tr denotes trace of the operator andj = 1, 2, 3, 4.

The single-modes-parametrized quasiprobability distribution functions are formally
defined by the Fourier transform of thes-parametrized characteristic functions as

W(1)(αj , s, t) = 1

π2

∫
d2ζj C

(1)(ζj , s, t)exp(αj ζ
∗
j − ζjα∗j ). (5.2)

Now we extend the definitions of the single-mode characteristic function and single-mode
quasiprobability functions to include four modes (joint quasiprobability functions), as

C(4)(ζ , s, t) = Tr

[
ρ̂(0) exp

4∑
i=1

(
s

2
|ζi |2 + ζi â

†
i (t)− ζ ∗i âi (t)

)]
(5.3)

W(4)(α, s, t) = 1

π8

∫
C(4)(ζ , s, t)

4∏
j=1

exp[(αj ζ
∗
j − α∗j ζj )] d2ζj (5.4)
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whereC(4)(ζ , s, t) is given by (5.3). Whens = 1, 0,−1, equation (5.4) gives formally a
GlauberP -function, WignerW -function and HusimiQ-function, respectively. For the sake
of simplicity, we have used the notationsα = (α1, α2, α3, α4) andζ = (ζ1, ζ2, ζ3, ζ4).

The superscripts (1) and (4) in the above equations stand for single-mode case and four-
mode case, respectively.

The known relations for the different moments of the bosonic operators for the single mode
in terms of characteristic functions and quasiprobability functions [40] can be extend to four
modes. In other words, the normal form, antinormal form and symmetrical form for moments
of bosonic operators for four modes can be evaluated with the help of the joint charateristic
functions by differentiation or by integration using joint quasiprobability functions as〈 4∏
j=1

â
†mj
j (t)â

nj
j (t)

〉
=

4∏
j=1

∂mj+nj

∂ζ
mj
j ∂(−ζ ∗j )nj

C(4)(ζ , s = 1, t)|ζ=ζ ∗=0

=
∫
W(4)(α, s = 1, t)

4∏
j=1

α
∗mj
j α

nj
j d2αj (5.5)

〈 4∏
j=1

â
mj
j (t)â

†nj
j (t)

〉
=

4∏
j=1

∂mj+nj

∂ζ
nj
j ∂(−ζ ∗j )mj

C(4)(ζ , s = −1, t)|ζ=ζ ∗0

=
∫
W(4)(α, s = −1, t)

4∏
j=1

α
∗nj
j α

mj
j d2αj (5.6)

〈 4∏
j=1

â
†mj
j (t)â

nj
j (t)

〉
=

4∏
j=1

∂mj+nj

∂ζ
mj
j ∂(−ζ ∗j )nj

C(4)(ζ , s = 0, t)|ζ=ζ ∗=0

=
∫
W(4)(α, s = 0, t)

4∏
j=1

α
∗mj
j α

nj
j d2αj (5.7)

wherenj ,mj are positive integers, and
∫

is multi-integral overα1, α2, α3, α4 phase space. It is
known thatP -representation is sometimes difficult to use, for instance in interaction problems,
since it can be highly singular.

5.1. Input coherent light

Now we turn our attention to calculation of the previous quantities when the initial input light
is coherent. The density operator is

ρ̂coh(0) =
4∏
j=1

|α〉j j 〈α|. (5.8)

and for the joints-parametrized characteristic function we have

C
(4)
coh(ζ , s, t) = exp

4∑
j=1

[ 1
2(s|ζj |2 − |ηj (t)|2) + (ᾱ∗j (t)ζj − ᾱj (t)ζ ∗j )] (5.9)

whereᾱj (t) are the mean values of the operatorsâj (t) with respect to the coherent states and
ηj (t), j = 1, 2, 3, 4 are given by

η1(t) = ζ1f1(t) + iζ2g1(t) + iζ ∗3h1(t)− ζ ∗4 l1(t) (5.10a)

η2(t) = ζ2g2(t)− iζ1f2(t) + iζ ∗4 l2(t)− ζ ∗3h2(t) (5.10b)

η3(t) = ζ3h3(t) + iζ ∗1f3(t)− ζ ∗2g3(t) + iζ4l3(t) (5.10c)

η4(t) = ζ4l4(t) + iζ3h4(t) + iζ ∗2g4(t)− ζ ∗1f4(t). (5.10d)
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Equations (5.4) and (5.9) lead to the joint Wigner function expressed as

W(4)(α, s = 0, t) = 16

π4
exp

(
− 2

4∑
j=1

|χj (t)|2
)

(5.11)

where

χ1(t) = µ1(t)f1(t) + iµ2(t)g1(t) + iµ∗3(t)h1(t)− µ∗4(t)l1(t) (5.12a)

χ3(t) = iµ∗1(t)f3(t)− µ∗2(t)g3(t) +µ3(t)h3(t) + iµ4(t)l3(t) (5.12b)

µj(t) = ᾱj (t)− αj , andχ2(t), χ4(t) can be obtained with the aid of transformation (2.8).
The expression for the jointQ-function is obtained in appendix A.
The single-modes-parametrized characteristic function ands-parametrized quasiproba-

bility function are given, respectively, as

C(1)(ζj , s, t) = exp

[
−|ζj |

2

2
(τ 2
j (t)− s) + ζj |ᾱ∗j (t)− ζ ∗j ᾱj (t)

]
(5.13)

W(1)(αj , s, t) = 2

π(τj (t)− s) exp

[
−2
|ᾱj (t)− αj |2
(τj (t)− s)

]
(5.14)

wherej = 1, 2, 3, 4 and

τ1(t) = f 2
1 (t) + f 2

2 (t) + f 2
3 (t) + f 2

4 (t)

τ3(t) = h2
1(t) + h2

2(t) + h2
3(t) + h2

4(t).
(5.15)

Without much effort one can see in equation (5.14) that the single-modeP -representation
obtained fors = 1 hasδ-function singularity only att = 0, i.e. for the coherent state. In other
words, with respect to switching between modes inside the coupler this singularity is washed
out. On the other hand, the joint Wigner function has time-dependent Gaussian forms. In
fact, the Gaussian property of the joint Wigner function has been used earlier to establish the
higher-order squeezing [41] properties of four-wave mixing [42]: if a field is squeezed to the
second order then it will be squeezed to all even orders. A similar property was proved in the
context of interferometers [43]. Also we can say that even higher-order squeezing in terms
of the quadratureŝX1 andŶ1, given in section 3, can be generated in this system. For more
details see [42].

Here we evaluate the joint as well as the single-mode marginal position distribution
functions in terms of the Wigner function [44]. Derivation of the marginal position distribution
function is given in appendix B. The single-mode marginal position distribution function can
be obtained with the help of the joint marginal position distribution function (B.2), given in
appendix B, by

P (1)(xs1, t) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

P (4)(x, t)dxs2 dxs3 dxs4 (5.16)

where sj takes on different values 1, 2, 3, 4 in correspondence with the required mode.
Therefore, we have

P (1)(xs1, t) = 1√
πϒs1(t)

exp

[
− [xs1− 1

2(ᾱ
∗
1(t) + ᾱ1(t))]2

ϒs1(t)

]
(5.17)

wheres1= 1, 2, 3, 4 and

ϒ1(t) = 1
2 + f 2

3 (t) + f 2
4 (t)

ϒ3(t) = 1
2 + h2

1(t) + h2
2(t)

(5.18)

andϒ2,4 are obtained by substitutions (2.8). Equation (5.17) has Gaussian form with both
centre and width being time dependent.
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Figure 8. Quadrature distribution functionP(x1, t) for the first mode against bothx1 andt for the
same values ofλj as those in figure 4 and|αj | =

√
2.

In figure 8 we have plotted the distribution functionP(x1, t) against bothx1 andt for the
same values ofλj and|αj | as those in figure 5. We can see that the distinguishable Gaussian
curve forP(x) for coherent state, att = 0, has been evolved with time by being centre-shifted,
squeezed and rotated in phase space. Moreover, we can observe the periodicity of the time-
dependent functions,fj (t), in the figure, showing a complete switching of energy between
modes.

5.2. Input number states

Now we discuss the previous quantities for input number states, where the density operator
takes the form

ρ̂n(0) =
4∏
j=1

|n〉jj 〈n|. (5.19)

Therefore, thes-parametrized characteristic function is

C(4)n (ζ , s, t) =
4∏
j=1

exp(− 1
2|ηj (t)|2)Lnj (|ηj (t)|2) (5.20)

whereηj (t) is given by (5.10) andLn is the Laguerre polynomial of ordern. The joint Wigner
function is

W(4)
n (α, t) = 16

π4

4∏
j=1

exp(−2|εj (t)|2)Lnj (4|εj (t)|2) (5.21)
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(a)

(b)

Figure 9. W -function for the single mode (mode 1) for different values of timet when initially the
first mode is|1〉 and the other modes are in vacuum states|0〉j . |αj |2 = 2, andλk are the same as
in figure 4: (a) for t = π

2 ; (b) for t = π .

whereεj (t) are

ε1(t) = α1f1(t) + iα2g1(t) + iα∗3h1(t)− α∗4l1(t) (5.22a)

ε3(t) = α3h3(t) + iα4l3(t) + iα∗1f3(t)− α∗4g3(t). (5.22b)
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(a)

(b)

Figure 10.Q-function for the single mode (mode 1) for the same situation as in figure 9.
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The other quantitiesε2(t) andε4(t) can be obtained with the help of transformation (2.8).
The single-modes-parametrized characteristic ands-parametrized quasiprobability

functions, for mode 1, can be read as

C(1)n (ζ1, s, t) = exp

(
−|ζ1|

2
(τ1(t)− s)

) 4∏
j=1

Lnj (|ζ1|2f 2
j (t)) (5.23)

W(1)
n (α, t, s) = 2

π(τ1(t)− s)
4∏
j=1

Lnj

[
f 2
j (t)

∂2

∂α∂(−α∗)
]

exp

(
− 2|α|2
τ1(t)− s

)
. (5.24)

Similar expressions can be obtained for the other modes by replacingf 2
j (t) andτ1(t) by the

corresponding quantities, e.g. byhj (t) andτ3(t), etc.
It has been shown for a linear directional coupler that when a number of states enter one

port of the coupler and a vacuum enters the other port, anSU(2) coherent state is generated
at the output ports [45]. The same authors have also shown that under particular conditions
the linear directional coupler can serve as a generator of a displaced number state [45]. In
fact, we noted for our structure that when the first mode enters the coupler in the Fock state
|1〉 and the other modes enter it in vacuum states, coherent states can be generated as output
light governed by the coupler parameters. This is demonstrated in figures 9 and 10 where
aW -function and aQ-function given by (5.24) have been depicted for the interaction time
t = π

2 with coupling constants taken as those in figure 4. We can see that theW -function and
Q-function have symmetric Gaussian shapes with centres slightly shifted from(0, 0). The
width of theQ-function is greater than that of theW -function, see figures 9(a) and 10(a).
However, these characteristics are closely related to those for coherent states, i.e. our model
can be used also as a generator for coherent state at this interaction time.

It is worth noting that some of the original characteristics of the input Fock state|1〉 can be
recovered for large interaction timet = π . This is evident in figures 9(b) and 10(b), where the
W -function has negative values, but these values are less pronounced than those for the initial
Fock state, see figure 2 of [46] for comparison. TheQ-function also has a hole in the top.

6. Photon-number distribution

The photon concept is an integral part of the modern description of light and can be measured
by a photon detector based on the photoelectric effect.

Owing to the coupler device it could be interesting to consider a photon-number selector,
due to its switching properties. So we devote this section to discuss the photon-counting
distribution properties of an input radiation field prepared initially with coherent states or one
mode can be in the Fock state and the remaining modes in vacuum states. We use the integral
relation for the photon-counting distribution in terms of the Wigner function and Laguerre
polynomials given by

P (1)(nj , t) = 2(−1)nj

nj !

∫
W(1)(αj , t)exp(−2|αj |2)Lnj (4|αj |2) d2αj (6.1)

where j denotes the mode under consideration andW(1)(αj , t), the single-mode Wigner
function for initially input coherent light, is given by (5.14).

Combining equations (5.14) and (6.1), and carrying out the integration, gives

P (1)(nj , t) = 2
(τj (t)− 1)nj

(τj (t) + 1)nj+1 exp

[
−2
|ᾱj (t)|2
τj (t) + 1

]
Lnj

[
4
|ᾱj (t)|2

1− τ 2
j (t)

]
(6.2)
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(a) (b)

Figure 11. Photon-number distribution for the first modeP (1)(n1, t) againstn1 (solid curve) for
different values of timet : (a) λk are the same as in figure 4 witht = π ; (b) (t, λ1, λ2, λ3) =
( 3π

2 , 0.6, 1.6, 0.5); the corresponding Poisson distribution is given for comparison (dashed curve).

whereτj (t) are given by (5.15), and̄αj (t), as we mentioned before, are the mean photon
numbers in thej th mode with respect to coherent states.

It is easy to check that (6.2) is normalized to unity, as any probability distribution must
be, i.e.

∞∑
nj=0

P (1)(nj , t) = 1. (6.3)

In figures 11(a) and (b) full curves represent the photon-number distribution for mode 1 for
different values of time and for different values of coupling constants. In figures 11(a) and
(b) we have used(t, λ1, λ2, λ3) = (π, 0.1, 1.2, 0.5) and(t, λ1, λ2, λ3) = ( 3π

2 , 0.6, 1.6, 0.5),
respectively. It is convenient to compare these curves with those for Poisson distribution,

P(nj , t) = 〈n̂j (t)〉
nj

nj !
exp(−〈n̂j (t)〉) (6.4)

where〈n̂j (t)〉 are given in (4.8) forτ = 0, which correspond to fully coherent fields with the
same〈n̂j (t)〉. These photon distributions are shown by dashed curves. In these figures one
can see that antibunching cannot occur because the actual photon distribution is broader than,
or it is close to, the corresponding Poisson distribution, as shown in figures 11(a) and (b),
respectively; this conclusion is in good agreement with the results of section 4.

Now we study the photon-number distribution when one mode enters the structure in
number state and the other modes are in vacuum states, e.g. assuming mode 1 starts withm

photons and the other modes are initially in vacuum|0〉j . So the photon-number distribution
to findn1 photons in mode 1 can be given with the help of equation (5.24) and relation (6.1) as

P (1)(n1, t) = (m + n1)!(τ1(t)− 1)n1[1 + τ1(t)− 2f 2
1 (t)]

m

n1!m!(1 + τ1(t))m+n1+1

×F
[
−m,−n1;−m− n1,

(1 + τ1(t))[τ1(t)− 2f 2
1 (t)− 1]

(1− τ1(t))[2f 2
1 (t)− τ1(t)− 1]

]
(6.5)

whereF(. . .) is the Gaussian hypergeometric function. From expression (6.5) it can be shown
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Figure 12. Photon-number distribution for mode 1 against
timet ,λj have the same values as those in figure 4 for initial
input photon numberm = 6 with differentn1: n1 = 4
(solid curve),n1 = 2 (small dashed curve), andn1 = 0
(long dashed curve).

as a control that the initial photon-number distribution isδm,n1, as must be. A similar expression
for mode 3 can be obtained when replacing (f1(t), τ1(t), n1) by (h3(t), τ3(t), n3).

In figure 12 evolution of the photon-number distribution for mode 1 is plotted against time
t for initial input photon numberm = 6 with different values ofn1, andλj have the same values
as those in figure 4. It can be seen that the nonlinear coupler acts as a selector of different
photon-number distributions in the course of interaction, i.e. the maximum of probability to
find, for instance,n1 = 2 photons in one mode is located in a different point of the coupler
with respect to the probability to find, for example,n1 = 4 photons. Also we can see that the
photon-number distribution for the casesn1 = 2, 4 evolves into a two-peak structure, the first
peak higher than the second one, and this shows that the photon-number distribution, for some
cases, takes on four values for the same photon-number distribution at different intervals of
the interaction time. This is in contrast to the behaviour of the photon-number distribution of
a linear directional coupler [47] where the single peak structure is dominant in its behaviour.

In figure 13 the photon-number distribution is illustrated for initial photon numberm = 6
for different modes 1, 2, 3, 4 (curves A, B, C, D, respectively) withn1 = 6, nj = 2, j = 2, 3, 4
and for shown values ofλj . In these figures we can see some switching in terms of the photon-
number distribution, based on some complementarity of photon-number distributions in various
modes. For example, for short interaction times decreasing probabilities for mode 1 (curve A)
gives rise to the increase of probabilities for the corresponding photon numbers of the others
modes (curves B, C, D), and later on the situation is reversed, and finally the photon-number
distribution in all modes is flat with negligible probabilities for single numbers.

7. Conclusions

The main conclusions of this paper are summarized as follows. Quantum statistical properties
of an optical field propagating inside a directional coupler containing nondegenerate parametric
amplification process have been studied in the framework of Hamiltonian formalism. Particular
attention has been paid to two-mode squeezing, the second-order correlation function as well
as the cross-correlation function, quasiprobability distribution functions, and photon-number
distribution. Incident number states and coherent states have been considered. We have
shown that for input coherent light, i.e. Poissonian light, the system can generate squeezed
light in terms of two-mode squeezing depending on the values of the coupling constants. More
precisely, when the linear coupling is stronger than the nonlinear one, there is the possibility
to obtain squeezed light when the signal beam is in one waveguide and the idler beam in the
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(a) (b)

Figure 13. Photon-number distribution for initial photon numberm = 6 for different modes
1, 2, 3, 4 with n1 = 6, nj = 2, j = 2, 3, 4 corresponding to curves A–D, respectively, forλj as in
figure 4.

other, provided that the signal beams are connected by the evanescent waves. Nevertheless, this
possibility is completely smeared when both signal or idler beams are considered. Furthermore,
even higher-order squeezing can also be obtained in this system, which was exhibited in relation
to the Gaussian property of the Wigner function. On the other hand, we have demonstrated that
for input Fock states, i.e. for sub-Poissonian light, our model can provide sub-Poissonian light
governed by coupler parameters. However, for input coherent light, coherent light, partially
coherent light and chaotic light can be generated. This was demonstrated in terms of both
the second-order correlation function and photon-number distribution. Concerning photon
antibunching, we have shown for both number and coherent input states that the outgoing field
oscillates between bunching and antibunching giving a good indication that there is no direct
relation between sub-Poissonian statistics and photon antibunching, as shown in the literature
previously [37,38]. Finally, it is important to mention that the coherent state can be generated
as output light from the structure under consideration when one of the input modes is in Fock
state|1〉 and the other modes are in vacuum states with some control of the parameters of the
coupler.
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Appendix A

In this appendix we write the exact form for the jointQ-function. It can be calculated similarly
as the joint Wigner function by inserting the joint antinormal characteristic function given by
(5.8) into (5.2) and carrying out the integration. We get, after tedious calculation, that

Q(4)(α, t) = (1− R2
4(t))

π4S1(t)S2(t)S3(t)S4(t)
[K1(t)K2(t)− J 2(t)]−1

× exp

(
−
[
|$1(t)|2 +

|$2(t) + iR4(t)$1(t)|2
1− R2

4(t)
+

|U(t)|2
K1(t)(1− R2

4(t))

])
× exp

(
− K1(t)Z

2(t)

(K1(t)K2(t)− J 2(t))(1− R2
4(t))

)
(A.1)

where

$j(t) = χj (t)√
Sj (t)

j = 1, 2, 3, 4 (A.2a)

and

S1(t) = f 2
1 (t) + g2

1(t) S2(t) = f 2
2 (t) + g2

2(t)

S3(t) = h2
3(t) + l23(t) S4(t) = h2

4(t) + l24(t)
(A.2b)

R1(t) = h2(t)h3(t) + l2(t)l3(t)√
S2(t)S3(t)

R2(t) = f1(t)f4(t) + g1(t)g4(t)√
S1(t)S4(t)

R3(t) = f3(t)f4(t)− g3(t)g4(t)√
S3(t)S4(t)

R4(t) = f1(t)f2(t) + g1(t)g2(t)√
S1(t)S2(t)

R5(t) = g1(t)g3(t)− f1(t)f3(t)√
S1(t)S3(t)

R6(t) = f2(t)f4(t) + g2(t)g4(t)√
S2(t)S4(t)

(A.2c)

K1(t) = (1− R2
5(t))(1− R2

4(t))− (R4(t)R5(t)− R1(t))
2

K2(t) = (1− R2
2(t))(1− R2

4(t))− (R4(t)R2(t)− R6(t))
2 (A.2d)

U(t) = (R5(t)R4(t)− R1(t))($
∗
2 − iR4(t)$

∗
1 )− (1− R2

4(t))($3(t) + iR5(t)$
∗
1 (t))

(A.2e)

J (t) = (R4(t)R2(t)− R6(t))(R5(t)R4(t)− R1(t)) + (1− R2
4(t))(R2(t)R5(t) +R3(t))

(A.2f)

and

Z(t) =
∣∣∣∣(1− R2

4(t))($4(t) +R2(t)$
∗
1 (t)) + i(R2(t)R4(t)

−R6(t))($
∗
2 (t)− iR4(t)$

∗
1 (t)) + i

J (t)U(t)

K1(t)

∣∣∣∣ (A.2g)

whereχj (t) are given by (5.12).

Appendix B

In this appendix we give the exact form for joint marginal position distribution which is obtained
from the joint Wigner function by

P (4)(x, t) =
∫ ∞
−∞

W(4)(α, s = 0, t)dy (B.1)
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whereαj = xj + yj ; combination of equations (5.11) and (B.1), and integration, leads to

P (4)(x, t) = 4

π
[β1(t)β2(t)β3(t)β4(t)]

−1

× exp

{
− 2

4∑
i=1

[|νj (t)|2 + x2
1f

2
j (t) + x2

2g
2
j (t) + x2

3h
2
j (t) + x2

4l
2
j (t) + xj (t)ξj (t)]

}
× exp{8(h3(t)g3(t)− g4(t)h4(t))x2x3 + 8(f2(t)l2(t) + f1(t)l1(t))x1x4}
× exp

{
1

2β2
1(t)

(z1(t) cosθ̄ (t)− z4(t) sin θ̄ (t))2
}

× exp

{
1

2β2
2(t)

(z4(t) cosθ̄ (t) + z1(t) sin θ̄ (t))2
}

× exp

{
1

2β2
3(t)

(z3(t) cosφ̄(t) + z2(t) sinφ̄(t))2
}

× exp

{
1

2β2
4(t)

(z2(t) cosφ̄(t)− z3(t) sinφ̄(t))2
}

(B.2)

where

z1(t) = 4

[
(f1(t)g1(t) + f2(t)g2(t))x2 + (f3(t)h3(t) + f4(t)h4(t))x3 +

σ1(t)

4

]
(B.3a)

z2(t) = 4

[
(l2(t)g2(t) + l1(t)g1(t))x4 − (f1(t)g1(t) + f2(t)g2(t))x1 +

σ2(t)

4

]
(B.3b)

z3(t) = 4

[
(f3(t)h3(t) + f4(t)h4(t))x1 + (l2(t)h2(t)− l1(t)h1(t))x4 +

σ3(t)

4

]
(B.3c)

z4(t) = 4

[
(g2(t)l2(t) + l1(t)g1(t))x2 − (l2(t)h2(t)− l1(t)h1(t))x3 +

σ4(t)

4

]
(B.3d)

and

ν1(t) = ᾱ1(t)f1(t) + iᾱ2(t)g1(t) + iᾱ∗3(t)h1(t)− ᾱ∗4(t)l1(t) (B.4a)

ν3(t) = ᾱ3(t)h3(t) + iᾱ4(t)l3(t) + iᾱ∗1(t)f3(t)− ᾱ∗2(t)g3(t) (B.4b)

σ1(t) = f2(t)(ν
∗
2(t) + ν2(t)) + if1(t)(ν

∗
1(t)− ν1(t))

+f3(t)(ν
∗
3(t) + ν3(t)) + if4(t)(ν

∗
4(t)− ν4(t)) (B.5a)

σ3(t) = h1(t)(ν
∗
1(t) + ν1(t)) + ih2(t)(ν

∗
2(t)− ν2(t))

+ih3(t)(ν
∗
3(t)− ν3(t))− h4(t)(ν

∗
4(t) + ν4(t)) (B.5b)

β2
1(t) =

4∑
j=1

(f 2
j (t) cos2 θ̄ + l2j (t) sin2 θ̄ )− 2(f2(t)l2(t) + f1(t)l1(t)) sin(2θ̄ ) (B.6a)

β2
2(t) =

4∑
j=1

(f 2
j (t) sin2 θ̄ + l2j (t) cos2 θ̄ ) + 2(f2(t)l2(t) + f1(t)l1(t)) sin(2θ̄ ) (B.6b)

β2
3(t) =

4∑
j=1

(g2
j (t) cos2 φ̄ + h2

j (t) sin2 φ̄) + 2(g4(t)h4(t)− h3(t)g3(t)) sin(2φ̄) (B.6c)

β2
4(t) =

4∑
j=1

(h2
j (t) cos2 φ̄ + g2

j (t) sin2 φ̄)− 2(g4(t)h4(t)− h3(t)g3(t)) sin(2φ̄). (B.6d)
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Furthermore,

ξ1(t) = f1(t)(ν
∗
1(t) + ν1(t))− if2(t)(ν

∗
2(t)− ν2(t)) + if3(t)(ν

∗
3(t)− ν3(t))

−f4(t)(ν
∗
4(t) + ν4(t)) (B.7a)

ξ3(t) = ih1(t)(ν
∗
1(t)− ν1(t))− h2(t)(ν

∗
2(t) + ν2(t)) + h3(t)(ν

∗
3(t) + ν3(t))

+ih4(t)(ν
∗
4(t)− ν4(t)) (B.7b)

where the following notations have been used:

θ̄ (t) = 1

2
tan−1

[
4(f2(t)l2(t) + f1(t)l1(t))∑4

j=1(l
2
j (t)− f 2

j (t))

]

φ̄(t) = 1

2
tan−1

[
4(g4(t)h4(t)− h3(t)g3(t))∑4

j=1(g
2
j (t)− h2

j (t))

] (B.8)

taking into account that the other unmentioned quantities may be obtained by means of
transformation (2.8).
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